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FINAL TECHNICAL REPORT
ON ONR GRANT N00014-90-J-1287

R&T Number: 4119368—01
Grant Number: ONR N00014-90-J-1287
Grant Title: Detection and Classification of Signals and Noise with Long Memory
Principal Investigators: Murad S. Taqqu and Gennady Samorodnitsky
Mailing Address: Department of Mathematics, 111 Cummington Street,
Boston University, Boston, MA 02215-2411
Phone Number: 617-353-3022
Email address: murad@math.bu.edu
Date: January 29, 1996

This is a summary of the main results obtained under ONR grant N00014-90-J-
1287 grant Detection and Classification of Signals and Noise with Long Memory with
Murad S. Taqqu and Gennady Samorodnitsky as Principal Investigators. Some of
the results obtained were included in our book Samorodnitsky and Tagqu [37] on
Infinite Variance Stable Processes. The following 38 articles have now all appeared or
are scheduled to appear in refereed publications. For ease of exposition the headings
below may include the description of more than one article.

The article Leland, Taqqu, Willinger and Wilson [21] on the analysis of computer
traffic, was reprinted a number of times. Its extended version [23] has received the
1995 William J. Bennett Award from the IEEE Communications Society and the
1996 IEEE W.R.G. Baker Prize Award. The Baker Prize Award recognizes “the
most outstanding paper reporting original work” in all publications of the IEEE.

Analysis of computer network traffic

In the papers Leland, Taqqu, Willinger and Wilson [22], [21], [23], [39], we show
how a careful statistical analysis of large sets of actual traffic measurements can
reveal new features of network traffic that have gone unnoticed by the literature and
yet, seem to have serious implications for predicted network performance. We use
hundreds of millions of high-quality traffic measurements from an Ethernet local area
network to demonstrate that Ethernet traffic is statistically self-similar, and that this
property clearly distinguishes between currently used models for packet traffic and
our measured data. We also indicate how such a unique data set (in terms of size
and quality) (i) can be used to illustrate a number of different statistical inference
methods for self-similar processes, (ii) gives rise to new and challenging problems in
statistics, statistical computing and probabilistic modeling, and (iii) opens up new
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areas of mathematical research in queueing theory and performance analysis of future
high-speed networks.

The statistical nature of variable-bit-rate video images

With the recent availability of large data sets of real variable-bit-rate video data
(representing 1/2 to 2 hours of actual video), the following question arises naturally:
what are the inherent features of variable-bit-rate video images; i.e., features which
are independent of scene and compression technique? This question is of particular
importance as one tries to move away from models that are highly scene and com-
pression technique dependent toward a more universal description of variable-bit-rate
video. In Beran, Sherman, Taqqu and Willinger [4], we analyze approximately 20 sets
of actual video data, generated by a variety of different compression techniques and
representing a wide range of different scenes. Performing extensive statistical and
graphical tests, our main conclusion is that long-range dependence is a predominant
characteristic of video images. The Hurst parameter H is one measure of the intensity
of long-range dependence. We found that low activity scenes like video-conferencing
or video phone have a lower value of H than high activity scenes where there is a lot
of motion. These findings challenge the currently proposed models in the literature,
all of which concentrate on short-range dependence and are not able to account for
the presence of long-range dependence.

Conditional moments of stable random variables

No a-stable random variable has a finite second moment when o < 2 and even the
first moment does not exist when a < 1. This makes it nontrivial to extend to the a-
stable case 0 < a < 2, prediction and filtering techniques developed for the Gaussian
case o = 2. The existence of conditional moments is closely related to a certain
integrability property of the spectral measure T of the a-stable vector (X (t), X(s)).
The papers Cioczek-Georges and Taqqu [7], [9] provide detailed conditions for

E(|X2|p1X1 = SE) < o0

to exist for values of p greater than a. In Cioczek-Georges and Taqqu (8], we study
the conditional variance.

Numerical computation of non-linear stable regression functions

In Hardin, Samorodnitsky and Taqqu [11] we derive the explicit formulas for the
regression function of one stable random variable upon another. Although the re-
gression may sometimes be linear, it is in general not a linear function. It involves
the quotient of two integrals which cannot be computed analytically and must there-
fore be approximated numerically. The general problem of computing the integrals
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is fraught with difficulties. In order to allow the practitioner to apply the formulas,
we present in Hardin, Samorodnitsky and Taqqu [12], a self-contained exposition of
the regression problem and a software package, written in the C language, which
overcomes the numerical difficulties and allows the user control over the accuracy of
the approximation. The package also allows the user to compute numerically the
probability density function of a stable random variable.

Does asymptotic linearity of the regression extend to stable domains of
attraction?

While the regression E[Y|X = ] is in general not linear when (X,Y) is a stable
random vector, it is asymptotically linear. What is the asymptotic behavior of the
regression if the random vector is not stable but in the stable domain of attraction?
This question is of importance in applications, where one encounters more often
random vectors that belong to the stable domain of attraction than vectors whose
distributions are precisely stable.

The paper Cioczek-Georges and Taqqu [6] gives an answer to the question in the
special case where the stable random variable X is perturbed by an independent
noise. More precisely, we suppose that the vector is (X + & ,Y), where (X,Y) is
o-stable and € is a random variable independent of (X,Y’), such that X + & is in the
domain of normal attracaation of X. We show that one cannot generally expect that
the regression E[Y|z + £ = z] is asymptotically linear even if (X,Y) is symmetric
a-stable. The asymptotic linearity of E[Y|X + £ = ], it turns out, is equivalent to
the statement that the density of X + & is asymptotically the same as the density of
X. We provide sufficient conditions for the latter and give a counterexample where
the regression is not asymptotically linear.

Linear models with long-range dependence and with finite or infinite vari-
ance

The paper Samorodnitsky and Taqqu [34] discusses a number of linear models
that display long-range dependence and either finite or infinite variance. Our goal
is to show that these models, while different, share many common features. The
models include the finite variance fractional ARIMA and fractional Gaussian noise,
as well as processes with long-range dependence and infinite variance such as the
linear fractional stable noise, the harmonizable stable noise, and the sub-Gaussian
and sub-stable processes. All these processes are linear transformations of white
noise.




Analyzing the asymptotic dependence structure of stable processes

The covariance function characterizes the dependence structure of a stationary
Gaussian process. What can one use when the process {X(t), —00 < t < oo} is a
non-Gaussian infinite variance stable process? Such a process shares many common
features with the Gaussian process, but because it has infinite variance, the covariance
is not defined. It is possible to use the covariation, but the covariation is not a
symmetric function and is not always defined.

We have used instead the function

r (t) — Eei(01X(t)+02X(0)) . Ee’le(t)Eei@zX(O) ,

where 6, and 6, are real constants. The function 7(t) is the difference between the
joint characteristic function of the process at time 0 and at time ¢, and the product
of the marginal characteristic functions. In the Gaussian case, r(t) is asymptotically
proportional to the covariance, if the covariance converges to zero. And, unlike the
covariation, 7(t) is always defined in the stable case. Hence the function r(t) is

a natural replacement of the covariance when ¢t is large and the covariance is not
defined.

We investigate the asymptotic behavior of r(t) in a number of papers. In Levy and
Taqqu [24], we obtain the asymptotic structures of the moving average, sub-Gaussian
and real harmonizable processes. We find that the intensity of the dependence tends
to zero in the moving average case but not in the sub-Gaussian and real harmonizable
case.

In Kokoszka and Taqqu [14], we investigate the asymptotic dependence structure
of a large class of self-similar stable random fields which are extensions of the linear
fractional Lévy motion to the parameter space R”. We show that the intensity of the
dependence decreases to zero like a power function as the lag tends to infinity and we
obtain the exact expression for the exponent in the power function. The exponent
depends on both the stability parameter and the self-similarity parameter.

In Kokoszka and Taqqu [13], we obtain the asymptotic dependence structure of
Chentsov-type processes. These processes are derived from random fields. They can
be defined geometrically, and as such they can be regarded as extensions of Lévy
Brownian motion on R".

Our study of r(t) shows that the Chentsov-type processes are different from the
fractional Lévy motion, log-fractional stable motion, harmonizable fractional stable
process and sub-Gaussian process. These results generalize those of Y. Sato. Our
methodology, moreover, is easier to apply. Sato’s approach was based on the fact
that the spectral measure of two-dimensional distributions of a Chentsov type pro-
cess is discrete whereas the spectral measure of two-dimensional distributions of the
fractional Lévy motion has an absolutely continuous component. Our method is sim-




pler, because, instead of analyzing the whole spectral measure we concentrate on a
particular functional of the measure.

Finally, the paper Lee, Rachev and Samorodnitsky [20] describes several addi-
tional dependence results for stable random variables, including “association”. In the
Gaussian case, random variables are associated if and only if their correlations are all
non-negative. While correlations are not defined in the stable case, it is possible to
exactly characterize the effect of “association”.

Infinite variance stable ARMA time series

In most applications of the ARMA model
Xn - b]_Xn_l - ... prn—p =€, + 0161+ ...+ Qg€n—q,

one assumes that the innovations e, are independent and identically distributed Gaus-
sian random variables or at least have finite second moments. In this paper we study
a more general ARMA model by considering the innovations €, with symmetrical
stable distributions. Because the time series will have infinite variance one cannot
use the covariances to describe the asymptotic dependence structure. In Kokoszka
and Taqqu [15], we show by using the function r(t) defined above, that while the
stable ARMA time series have infinite variance, they have nevertheless the same type
of asymptotic dependence structure as Gaussian ARMA time series. We show in
Kokoszka and Taqqu [17] that these results extend to stable fractional ARIMA time
series and in Kokoszka and Taqqu [19] to other infinite variance time series with
long-range dependence.

New classes of stable self-similar random fields

The class of stable self-similar processes with stationary increments has been the
focus of much study. Very little work exists, however, on stable self-similar random
fields, where the time-parameter is multidimensional. The paper Kokoszka and Tagqu
[16] focuses on random fields. Two new classes of symmetric stable self-similar random
fields with stationary increments are investigated, one of the “moving-average” type,
the other of the “harmonizable” type.

Self-similar processes

In Samorodnitsky and Taqqu [32], we first solve an outstanding problem posed by
other authors and show that when 0 < a < 1 the only a-stable self-similar stationary
process with index H = 1/« is the one that has independent increments, namely
the a-stable Lévy process. Then, considering the cases 1 < o < 2 we construct new
a-stable self-similar stationary increment processes with index H = 1/a. These are




related to random fields. To show that the new processes are different from each other
we use a technique we developed, which is based on the conditional distributions.

Characterization of linear and harmonizable fractional stable motions

A self-similar can be transformed into a stationary process by applying a non-
random transformation. The paper Cambanis, Maejima and Samorodnitsky [5] char-
acterizes the linear and harmonizable fractional stable motions as the self-similar sta-
ble processes with stationary increments whose left-equivalent (or right-equivalent)
stationary processes are moving averages and harmonizable respectively.

Maxima and minima of limiting stable stochastic processes

The investigation of functional limit theorems for processes with paths with jumps
was started by Skorohod, the Russian mathematician, in 1956. Skorohod, in his
seminal paper, introduced four ways to evaluate distances now known respectively as
Ji, Jo, M1, and M, and proved that the convergence of sums of i.i.d. random variables
to an a-stable Lévy motion, with 0 < @ < 2, holds in the J; sense. Jp is, today, the
commonly used distance. We show in Avram and Tagqu [3] that for sums of moving
averages with at least two nonzero coefficients, convergence in the Jp sense cannot
hold because adjacent jumps of the process may coalesce in the limit; however, if
the moving average coefficients are positive, then the adjacent jumps are essentially
monotone and one can have convergence in the M; sense. Our result is strong enough
that is can be used to evaluate limits of maxima and minima of stable stochastic
processes. '

Slepian inequality

The Slepian inequality and its modifications compares the behavior of the suprema
of two Gaussian processes. It is based on properties of the covariances. We have found
the corresponding inequality in the stable case, where covariances do not exist. Our
inequality, given in Samorodnitsky and Taqqu [35], involves the spectral measure
which characterizes the distribution of stable processes. To obtain the inequality,
we developed new relations involving stochastic dominance of infinitely divisible pro-
cesses. In fact, our Slepian inequality is valid not only for stable processes but also
for the so-called “G type” processes which extend the stable ones.

In Samorodnitsky and Taqqu [36], we study Slepian inequalities for general non-
Gaussian infinitely divisible random vectors. Conditions for such inequalities are
expressed in terms of the corresponding Lévy measures of these vectors. These con-
ditions are shown to be nearly best possible, and for a large subfamily of infinitely
divisible random vectors, these conditions are necessary and sufficient. As an appli-
cation we consider symmetric o-stable Ornstein-Uhlenbeck processes and a family of




infinitely divisible random vectors introduced by Brown and Rinott.

How linear combinations affect the distribution of stable vectors

We show in Samorodnitsky and Taqqu [33] that if X = (Xy,...,Xy) is a vector
in R? and all linear combinations of its components Y%, C;X; are random variables
with index o = 1, then the vector X is itself stable with index o = 1. This settles an
outstanding problem of Dudley and Kanter.

Zero-one laws for outputs of non-linear filters

Zero-one laws are basic to the analysis of sample paths of stochastic processes.

The history of zero-one laws for Gaussian processes goes back to Cameron and
Graces and to Shepp. They established in 1951 and 1956 respectively, zero-one laws
for Wiener processes. Their results have been progressively extended to more general
Gaussian processes by Kallianpur and Jain followed by Cambanis and Rajput and
Badrikian and Chevet. The first work on zero-one laws for non-Gaussian infinitely
divisible laws is that of Dudley and Kanter, who in 1974 have shown that a-stable
processes with 0 < o < 2 satisfy zero-one laws. Their argument indicates that a basic
reason for the zero-one dichotomy in the Gaussian and stable case is the linearity
property, namely that a linear combination of two independent copies of the process
is equivalent in law to an affine transformation of the process. However, Janssen
has demonstrated, in 1984, that zero-one laws hold also for many infinitely divisible
processes that do not possess necessarily the above linearity property and gave suffi-
cient conditions in terms of Lévy measures that ensure the zero-one dichotomy. The
motivation for our paper Rosinski, Samorodnitsky and Taqqu [30] stems from our
interest in non-linear filters with Gaussian inputs. We obtained the zero-one laws for
non-homogeneous chaos in Gaussian and certain other random variables. Examples
include non-linear processes with long-range dependence and processes that arise as
limits of U-statistics.

Distributions of subadditive functionals of sample paths of infinitely divis-
ible processes

Subadditive functions include suprema, integrals of paths, oscillation on sets, and
many others. The paper Rosinski and Samorodnitsky [29] gives an optimal condition
which ensures that, when the process is infinitely divisible, the distribution of a
subadditive functional is subexponential. An exact tail behavior for the distributions
is also provided, which improves many recent results in this area.




Subexponentiality of the product of independent random variables

Suppose X and Y are independent nonnegative random variables. The asymptotic
behavior of P(XY > t), as t — oo is investigated in Cline and Samorodnitsky
[10], whenever X has a subexponential distribution. Particular attention is given
to obtaining sufficient conditions on P(Y > t) for XY to have a subexponential
distribution.

Subexponential distributions have been used in branching processes, queuing the-
ory, renewal theory and large deviations.

Stable distributions in high-dimensional spaces

Geometric stable laws and processes have become an object of attention in re-
cent publications dealing with heavy tailed modeling. Many applications require
understanding geometric stable laws on infinite dimensional spaces. Rachev and
Samorodnitsky [27] study geometric stable laws on Banach spaces and Norvaisa and
Samorodnitsky [25] study stable processes on Orlicz spaces.

Integrability of stable processes

Let {X(t), t € T} be an a-stable stochastic process with 0 < o < 2. Samorod-
nitsky [31] investigates its integrability with respecty to some measure v and obtains
necessary and sufficient conditions for [ |X(¢)[Pv(dt) < oo a.s. where p > 0. It is
shown that the distribution of the above integral has a power tail behavior, and a
Fubini-type theorem is proved which justifies a change of order of integration and
stochastic integration with respect to a stable ordinary random measure.

The result has important implications for the computation of Fourier and inverse
Fourier transforms of stable processes.

Random recursions

The paper Rachev and Samorodnitsky [28] investigates certain processes defined
by random recursions, e.g.,

St =8 Zn+YZn, n=1,2,...

where {(Y,,Z,), n > 1} is an independent and identically distributed sequence of
random vectors. Application of the model include the steady of spoilage, decay, etc.
A particular subclass of such random recursions are the so-called ARCH processes,
which have become recently popular in time series analysis.




Fractional super Brownian motion

Adler and Samorodnitskky [1] study limits of systems of noninteracting particles
undergoing critical branching which follow a self similar spatial motion with stationary
increments. The limit processes are of the super and historical process type. In
the case in which the underlying motion is that of a fractional Brownian motion, a
characterisation of the limit process is obtained as a kind of stochastic integral against
the historical process of a Brownian motion defined on the full real line.

Level crossings for stable processes

Let {X(t),t > 0} be a harmonisable, symmetric, a-stable stochastic process,
and C,(T) the number of times that X crosses the level u during the time interval
[0,T). Adler, Samorodnitsky annd Gadrich [2] obtain the precise numerical value of
C = limy_,00 u*EC,(T). By way of examples, including an explicit evaluation of EC,
for a stationary process and a combination of analytic and Monte Carlo techniques for
some others, we show that the asymptotic approximation EC, ~ Cu~? is remarkably
accurate, even for quite low values of the level u. This formula therefore serves, for
all practical purposes, as a ”Rice formuala” for harmonisable stable processes, and
should be as important in the applications of harmonisable stable processes as the
original Rice formula was for their Gaussian counterparts.

A characterization of mixing processes of type G

Mixing is a form of asymptotic independence. A stationary Gaussian process is
mixing if and onmly if its covariance function tends to zero as the lag increases to
infinity. In Kokoszka and Taqqu [18], we give an analogous characterization for a
large class of symmetric infinitely divisible processes, known as processes of type G,
whose marginal distributions are variance mixtures of the normal distribution.

Book on infinite variance stable processes

Stable processes, which have attracted growing interest in recent years, have pre-
viously not been the single subject of any monograph or comprehensive overview. In
the book Samorodnitsky and Taqqu [37] , we hope to make this important branch of
probability widely accessible and provide both an introduction and a basic reference
text. We include this book in our report because it presents in a systematic fashion
some of the results of the articles we mentioned above.

The central limit theorem which offers the fundamental justification for approx-
imate normality points to the importance of the stable distributions: they are the
only limiting distributions of normalized sums of independent, identically distributed




random variables, and perforce include the Gaussian as distinguished elements. Gaus-
sian distributions and processes have long been well understood and their utility as
both stochastic modeling constructs and analytical tools is well-accepted. However,
they do not allow for large fluctuations and are thus often inadequate for modeling
high variability. Non-Gaussian stable models, on the other hand, do not share such
limitations. In general, the upper and lower tails of their marginal distributions de-
crease like a power function. The rate of decay depends on a number a, which takes
a value between 0 and 2. The smaller ¢, the slower the decay and the heavier the
tails. The distributions always have infinite variance and when o <1, they have an
infinite mean as well.

Tn the last two or three decades, data with “heavy tails” have been collected in
fields as diverse as economics, telecommunications, hydrology and physics of con-
densed matter, which suggests using non-Gaussian stable processes as possible mod-
els. Such models offer the additional merit of flexibility and variety when compared
to Gaussian processes. The latter are completely specified by their mean and auto-
covariance functions, whereas non-Gaussian stable processes command a much richer
parameterization. Gaussian distributions, moreover, are always symmetric around
their mean; the non-Gaussian stable ones can have an arbitrary degree of skewness.

In this book, we emphasize the probabilistic approach over the analytic one. We
talk of tails, moments and dependence structures and focus on multivariate properties
and sample paths. The book will be useful to a wide spectrum of researchers in
probability, applied probability and statistics. Our goal has been to write a very
readable text and to keep the wider context in clear perspective.
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